Methods in Vicariance Biogeography: Assessment of the Implementations of Assumptions 0, 1, and 2

Marco G. P. van Veller,1 D. J. Kornet, and M. Zandee

Section Theoretical Biology and Phylogenetics, Institute of Evolutionary and Ecological Sciences, Leiden University, P.O. Box 9516, 2300 RA Leiden, The Netherlands

Accepted March 10, 2000

As we have argued previously, for the valid derivation of general area cladograms in vicariance biogeography, two requirements should be met. First, sets of area cladograms derived under assumptions 0, 1 and 2 should be inclusive (requirement I). Second, general area cladograms should be based on area cladograms, for different monophyletic groups, derived under the same assumption (requirement II). We now assess for their actual implementation of assumptions A0, A1, and A2 and for the extent to which they meet requirements I and II, the following methods (and correlated computer programs): Component Compatibility Analysis (CAFCA), Brooks Parsimony Analysis (PAUP), Component Analysis (Component 1.5), Reconciled Tree Analysis (Component 2.0), and Three Area Statement Analysis (TAS). For this purpose we use empirical (Heterandria, Xiphophorus, Cyttaria, Eriococcus/Madarococcus) and theoretical data sets. All programs appear to violate, to a different degree, requirement I (deriving inclusive sets of area cladograms under assumptions) when dealing with sympatric taxa under A1 or A2. Dealing with sympatric taxa a posteriori only prevents this violation. All programs examined appear to meet requirement II (deriving general area cladograms under a single assumption).

Key Words: vicariance biogeography; assumptions; inclusion; methods; computer programs; Component Compatibility Analysis; Brooks Parsimony Analysis; Component Analysis; Reconciled Tree Analysis, Three Area Statement Analysis; CAFCA; PAUP; Component 1.5; Component 2.0; TAS; Heterandria; Xiphophorus; Cyttaria; Eriococcus/Madarococcus.

INTRODUCTION

In vicariance biogeography the first-order explanation for the distribution of taxa over areas is by vicariance events triggering speciation in species of various monophyletic groups. This indicates that the cladogenetic and distribution data of the taxa of these monophyletic groups are considered informative for the reconstruction of the historical relationships among their areas of distribution. To obtain an initial hypothesis on the historical relationships of the areas, the taxa of a taxon cladogram (the hypothesis of the historical taxon relationships) are replaced by their areas of distribution, resulting in a taxon–area cladogram (Morrone and Carpenter, 1994; Enghoff, 1996).

1To whom correspondence should be addressed. Fax: +31 71 5274900. E-mail: vanveller@RULSFB.LeidenUniv.NL.
If the distribution of taxa from a particular monophyletic group over areas indeed results from vicariance events only, each taxon will be present in a single area and each area will harbor a single taxon. Data without widespread or sympatric taxa result in taxon–area cladograms with, for each area, its own unique terminal node. In such straightforward cases the area cladogram is identical to the taxon–area cladogram (Rosen, 1978; Nelson and Platnick, 1981; Page, 1988; Morrone and Carpenter, 1994).

However, the distribution of taxa from a particular monophyletic group can also be caused by processes such as the origin of a barrier or the break-up of an area without speciation, sympatric speciation, extinction, and dispersal, which may lead to widespread and sympatric distributions of taxa. The methods we examine all aim to conjecture area cladograms with their own unique terminal nodes for each area, so each of them must deal with multiple areas at a terminal node (resulting from widespread taxa) and redundancy of areas (resulting from sympatric taxa). In addition to the assumption of vicariance as a first-order explanation (A0, Zandee and Roos, 1987; Wiley, 1988a; Brooks, 1990), more relaxed assumptions (A1 and A2, Nelson and Platnick, 1981; Page, 1988) have been proposed to derive area cladograms. In this paper we will assess the precise implementation of assumptions A0, A1, and A2 by various methods. The methods vary in two main ways regarding how they create a list of components (each consisting of an area or a combination of areas) from the taxon–area cladograms under A0, A1, and A2. From these lists of components they subsequently derive area cladograms with their own unique terminal nodes for all areas.

The a posteriori methods Component Compatibility Analysis (CCA; Zandee and Roos, 1987) and Brooks Parsimony Analysis (BPA; Brooks, 1990; Wiley, 1988a,b) do not allow a distortion of the historical relationships in the taxon–area cladogram for which the already established original taxon cladogram was the source. To deal with two areas at a single terminal node of a taxon–area cladogram, nodes (i.e., components) are just added to interpret the as yet unhyphothesized historical relationship between these two areas. Under A0, A1, and A2, the possible places of the additional nodes are interpreted with increasing and inclusive degrees of freedom. In cases of redundancy of areas the a posteriori methods refrain from additions to the data altogether. Incongruent data that remain are explained a posteriori (taxon history protocol sensu Hovenkamp, 1997, or taxon relationship approach sensu Van Veller et al., 1999).

A priori methods such as Component Analysis (CA; Nelson and Platnick, 1981; Page, 1988, 1990), Reconciled Tree Analysis (RTA; Page, 1993a, 1994), and Three Area Statement Analysis (TAS; Nelson and Ladiges, 1991a,b,c), on the other hand, allow under A1 and A2 pruning and adding of taxa and taxon relationships. Thereby, these methods fit an explanation by the assumed processes under consideration (extinction, dispersal, etc.) only and overrule the historical relationships that were already established (to fit an explanation by the assumed processes only).

Morrone and Carpenter (1994) evaluated different methods used in vicariance biogeography. They compared area cladograms for different data sets obtained by CA, RTA, TAS, and BPA on the basis of items of error or agreement and found themselves unable to prefer one method over another. This outcome is perhaps not surprising since CCA, BPA, and TAS do not use items of error for the selection of area cladograms, but minimal number of steps. Lack of agreement (between the area cladograms obtained) is also to be expected since, as we will show in this paper, not all methods obtain area cladograms in a valid manner.

In a previous paper (Van Veller et al., 1999) we developed a methodological framework for the valid derivation of general area cladograms. As we showed, two requirements must be met:

I. Solution sets containing the area cladograms derived under A0, A1, and A2 for one group of taxa should be inclusive.

II. Solution sets for two or more groups of taxa should be compared under the same assumption.

This paper assesses to what extent requirements I and II are met by the implementations of the assumptions in the following five methods: CCA, BPA, CA, RTA, and TAS.

IMPLEMENTATIONS OF A0, A1, AND A2 IN METHODS FOR VICARIANCE BIOGEOGRAPHY

In this section we discuss how CCA, BPA, CA, RTA, and TAS (and their implementations in computer programs)
obtain area cladograms from cladogenetic and distribution data of the taxa of a monophyletic group under the different assumptions. For a schematic overview of the procedures followed in application of the methods, we refer to Appendix i.

Component Compatibility Analysis

In CCA, the data matrix that is used to derive area cladograms comprises a mapping of the cladogenetic relationships of the taxa onto the areas in which they occur (i.e., a representation of the taxon–area cladogram). This mapping is obtained by combining the taxon cladogram with the taxon distribution over the areas ("inclusive ORing," O’Grady and Deets, 1987; "Boolean inner product," Zandee and Roos, 1987). The part of the matrix that represents the inner nodes of the taxon cladogram corresponds to a single multistate character. The states of this character represent the additive binary codes of the inner nodes of the taxon cladogram and are treated accordingly during the cladogram optimization.

In CCA the nodes of a cladogram represent components. The components are defined as partial monothetic sets of areas (Zandee and Roos, 1987) and are characterized by unique character states. Components are extracted from the binary representation of the area by node data matrix by applying this definition. Area cladograms are derived from the list of components by letting a branch and bound algorithm (Bron and Kerbosch, 1980) search for the largest sets of mutually compatible components (maximal cliques). Components are compatible when they either include or exclude one another and do not overlap (Nelson, 1979). Each of these maximal cliques corresponds with an area cladogram. Parsimony mapping of the area by node data matrix finds the area cladograms of minimum length (number of steps).

In CCA, areas with sympatric taxa (redundancy) are considered to be analogous to taxa with more than one autapomorphic character. In a standard cladistic character analysis such taxa are not considered to present a problem that needs to be solved a priori. Therefore, by analogy, occurrence of two or more (sympatric) taxa in one area is interpreted "as is" and is dealt with by the derivation of a cladogram from the data matrix (Zandee, 1999; Zandee and Roos, 1987). Thus, in CCA no special procedure is applied to deal with redundancy, either under A0 or under A1 or A2.

In CCA widespread taxa can be dealt with under A0, A1, or A2. Under A0 the areas of the widespread taxa are considered to be sister areas. No additional provisions to the data matrix are made under A0. The implementation of A1 implies the derivation of additional columns for the data matrix by combining all subsets of areas of a widespread taxon with the areas of its sister group. These columns are used to extract additional components. As these columns represent assumptions and not observations, they are not used in the calculation of the cladogram length. The implementation of A2 also implies the derivation of additional columns for the data matrix. These columns are obtained by letting the areas of a widespread taxon be able to float over the cladogram by combining all subsets of these areas with the distributions of all other clades in the cladogram (Zandee and Roos, 1987). Again, these columns are used only to derive additional components and do not enter the computation of cladogram length.

The computer program used in this study to perform CCA is CAFCA (version 1.5j; Zandee, 1999).

Brooks Parsimony Analysis

In BPA, data on the distribution of the taxa and the taxon cladogram are combined in a binary area by node data matrix through inclusive ORing (O’Grady and Deets, 1987). This matrix represents a taxon–area cladogram, obtained when the taxa at the terminal nodes of a taxon cladogram are replaced by their areas of distribution. However, in contrast to CCA, and to polarize the data, a hypothetical outgroup with all zeros (and a 1 for the root of each taxon cladogram; Brooks, personal communication) is added. This data matrix is used to derive area cladograms of minimal length (number of steps) under A0, using a standard maximum parsimony approach as implemented in PAUP (version 3.11; Swofford, 1990) or Hennig86 (Farris, 1988).

As in CCA, in BPA, areas with sympatric taxa (redundancy) are interpreted “as is” and the incongruencies they pose are explained a posteriori via extinction or dispersal (Brooks, 1990; Van Veller et al., 1999).

The BPA protocol (Brooks, 1990) does not provide instructions for the implementation of A1 and A2.

Copyright © 2000 by The Willi Hennig Society
All rights of reproduction in any form reserved
However, in order to assess BPA for its implementation of A0, A1, and A2, data matrices must be derived under A1 and A2 as well. In this study, we derive these data matrices by using CCA's protocol with an all-zero (except for a single 1 for the root of each taxon cladogram; Brooks, personal communication) outgroup added. However, in contrast to CCA, in BPA the additional extra columns derived to implement both A1 and A2 are treated as real data and are therefore included in the computation of cladogram length.

Component Analysis

In CA (as implemented by Page, 1988), area cladograms can be derived under one of three different assumptions (A0, A1, or A2) conditional a priori on the nature of the processes (vicariance; vicariance + extinction; or vicariance + extinction + dispersal) one assumes to have resulted in the pattern of distribution of the taxa involved. Under A0, a binary coded area by node data matrix (representation of the taxon–area cladogram) obtained via Brooks' (1981) coding method is used in the analysis. As in BPA, a hypothetical outgroup (a row with zeros) is added for polarization. A branch and bound algorithm (Hendy and Penny, 1982) is used to find area cladograms of minimal length (number of steps) (Page, 1988, 1990). As in BPA and CCA, areas with sympatric taxa (redundancy) are interpreted "as is." Consequently, an A0 analysis with CA is expected to be similar to a BPA analysis in both procedure and results.

For an analysis under A1, the binary coded area by node data matrix constructed under A0 is adjusted for internal nodes with descendant lineages with overlapping sets of areas are identified as redundant nodes. Areas present at only one descendant lineage of a redundant node and not at the other descendant lineage are excluded from further analysis since widespread taxa do not contribute components (sensu Nelson and Platnick, 1981). The two or more areas present at the excluded terminal node collapse with their sister areas to polytomies when area cladograms are derived from the adjusted data matrix via a standard maximum parsimony approach (as is used in BPA; Fig. 1). However, the branch and bound algorithm used in CA solves these polytomies in all possible dichotomies (Fig. 1).

Internal nodes with descendant lineages with overlapping sets of areas are identified as redundant nodes. Areas present at only one descendant lineage of a redundant node and not at the other descendant lineage of a redundant node are assumed to be missing due to extinction, failure of collection, or incorrect identification of one or more taxa (Page, 1988). These areas are identified and coded as question marks in the adjusted data matrix (Fig. 2). These question marks are optimized to either zeros or ones, whichever is most parsimonious (Fig. 2). Via this optimization, certain columns in the A1 matrix are adjusted and different from the corresponding columns in the A0 matrix. The different components that these adjusted columns define stand for the extinctions, failures of collection, or incorrect
Assessing Methods in Vicariance Biogeography

323

taxon–area cladograms are further reduced by removing areas from terminal nodes with more than one area (widespread taxa) and removing redundant occurrences of areas at different terminal nodes. The areas not present in these reduced area cladograms are the result of the removal of areas with widespread taxa. By placing these areas back in the cladogram at different positions, the areas of the widespread taxon are allowed to float over the whole cladogram, thereby deriving (nonreduced) area cladograms (Page, 1988, 1990).

The computer program used in this study to perform CA is Component (version 1.5; Page, 1990).

Reconciled Tree Analysis

In RTA, in contrast to CCA, BPA, and CA (under A0 and A1), no data matrix is used to derive area cladograms. A taxon–area cladogram is obtained in the standard fashion by replacing the taxa in the taxon cladogram by their areas of distribution. Each node in this taxon–area cladogram corresponds to a component (Page, 1993a). However, in contrast to BPA, CCA, and CA, these components are not represented as columns in a matrix. In RTA, the area cladograms are derived by comparison of estimated area cladograms with the taxon–area cladogram.

RTA, in contrast to BPA, CCA, and CA, deals with widespread taxa by means of a procedure that is rather different from the procedure that it uses to deal with sympatric taxa, although in both cases one of the three different assumptions (A0, A1, or A2) is invoked. Also, as in CA, dealing with widespread taxa has precedence over dealing with sympatric taxa.

First, widespread taxa are dealt with by mapping the taxon cladogram on the taxon–area cladogram. Under A0, each area of a widespread taxon is given its own terminal node by replacing the widespread taxon by its areas of distribution and introducing extra branches for each area. These branches (each leading to an area of a widespread taxon) are connected via internal nodes in such a way that the areas form a monophyletic group that corresponds to a component. As a result, an A0 analysis for widespread taxon with RTA is expected to be similar in results to a CCA, BPA, or CA analysis under A0. Under A1, the areas of a widespread taxon are not mapped separately, but are included in the range of the ancestor of the widespread taxon.
taxon (Page, 1994). As a result, no component is defined for these areas (sensu Nelson and Platnick, 1981). The areas of the range of the ancestor of the widespread taxon are connected via internal nodes and full dichotomous area cladograms are derived. The results are expected to be similar to the results of a CA analysis under A1. However, Enghoff (1998) criticizes results obtained with RTA under A1 when dealing with widespread taxa at basal positions in area cladograms. Under A2, only one of the areas of the widespread taxon is mapped and the other areas are given the ability to float over the whole cladogram.

Second, sympatric taxa are dealt with in RTA under A0, A1, and A2 via tree reconciliation (Page, 1993b, 1994). Therefore we call this method Reconciled Tree Analysis. However, when widespread taxa are combined with sympatric taxa, under A2, the distribution of the widespread taxa is reduced in favor of endemics. This conforms with Nelson and Platnick’s (1981) and Page’s (1988) handling of combinations of widespread and sympatric taxa.

The presence of the same area at different terminal nodes in the area cladogram (redundancy) is explained by reconciling the area cladogram with an initial area cladogram (which is estimated from the area cladogram by pruning redundant areas). To measure the degree of fit between the area cladogram and an area cladogram, Page (1988, 1993a, 1994) suggests three criteria:

- duplications (number of times a lineage of the taxon cladogram must be duplicated for reconciliation);
- areas added (i.e., half the number of items of error); or
- independent losses (number of areas or complete monophyletic groups of areas that must be assumed for reconciliation).

Different reconciliations can be obtained by changing the area cladogram via branch swapping. Reconciliations between the area cladogram and an area cladogram that need a minimum of duplications or independent losses are preferred. The area cladograms used for these (minimal) reconciliations are selected.

The area cladograms obtained with RTA can differ from the area cladograms selected via minimization of items of error (CA sensu Nelson and Platnick, 1981) because duplications are not counted in terms of items of error and because a single loss can stand for several areas (together in one clade) that must be added for the reconciliation.

The computer program used in this study to perform RTA is Component 2.0 (Page, 1993a). For selection of minimal reconciliations, both duplications and independent losses are counted.

Three Area Statement Analysis

In TAS, just like with CCA, BPA, and CA (under A0 and A1), a data matrix is used to derive area cladograms. However, in contrast to these methods the data matrix is not a direct representation of the taxon–area cladogram but consists of three area statements. The taxon–area cladogram is derived in the same way as with CCA, BPA, CA, or RTA by replacement of the taxa at the terminal nodes of the taxon cladogram with the areas in which they are distributed. From this cladogram the matrix with three area statements is derived.

Three area statements (Nelson and Ladiges, 1991a, b) in area cladistics are analogous to three taxon statements (Nelson and Platnick, 1991) in taxon cladistics. Three area statements are derived for each node of the area cladogram by coding which two areas are more related to each other than a third and coding the rest of the areas as question marks. By combining all different three area statements for each node and by transforming all nodes into combinations of three area statements, the taxon–area cladogram is translated into a matrix of three area statements. By recognition of different nodes in the taxon–area cladogram, a matrix of three area statements is derived under A0, A1, and A2.

Under A0 three area statements are derived by recognition of the widespread taxon as an extra node. Under both A1 and A2 only the internal nodes are used to derive three area statements.

Sympatric taxa are dealt with under both A0 and A1 by the derivation of three area statements and construction of area cladograms from these three area statements. As a result, under both A0 and A1, for sympatric taxa, the same area cladograms are expected to be obtained. Dealing with sympatric taxa under these two assumptions is similar to dealing with sympatric taxa “as is” with BPA (under A0, A1, or A2), CCA (under A0, A1, or A2), or CA (under A0). Under A2, in case
of a widespread taxon occurring together with another sympatric taxon in one of its areas, Nelson and Ladiges (1991a,c) recommend removing the sympatric occurrence of the widespread taxon and thereby to deal with redundancy a priori. This is similar to the procedure followed in CA and RTA to deal with such combinations of widespread and sympatric taxa a priori under A2.

After a matrix of three area statements is obtained under one of the assumptions, parsimony analysis, with an all-zero outgroup, is applied to derive area cladograms. For the derivation of a matrix with three area statements, in this study the computer program TAS (Nelson and Ladiges, 1991c) is used. The matrices are analyzed with Hennig86 to find most parsimonious area cladograms.

ASSESSMENT OF REQUIREMENTS I AND II IN IMPLEMENTATIONS OF METHODS

Theoretical and Empirical Data Sets

The theoretical data sets in this study consist of:

- all possible topologies for taxon cladograms with three (1 topology), four (2 topologies), and five (3 topologies) taxa;
- the distributions of these taxa over their areas (none of the taxa of the different taxon cladograms overlap in their distribution); and
- all possible arrangements, over these topologies, of the presence of a single widespread taxon, two sympatric taxa, and a combination of one widespread taxon and two sympatric taxa (see Appendix ii).

The theoretical data sets are used to evaluate the performance of the implementations of the methods with respect to meeting requirement I (inclusive solution sets derived under A0, A1, and A2).

The empirical data sets in this study consist of:

- taxon cladograms and the distribution of two monophyletic genera, Cyttaria (Crisci, 1988) and Eriococcus/Madarococcus (Humphries et al., 1986) (see Appendix iv), occurring in the same areas.

The empirical data sets are used to evaluate the performance of the implementations of the methods with respect to meeting requirement I. By virtue of the overlap in the distribution of the taxa of the different genera, the empirical data sets also allow (contrary to the theoretical data sets) one to evaluate the implementations of the methods for their meeting of requirement II (obtaining general area cladograms under a single assumption).

CAFCA (Component Compatibility Analysis)

Theoretical data sets for single groups. For the single group data sets containing widespread taxa all solution sets show inclusion under A0, A1, and A2 when obtained with CAFCA (Zandee, 1999). Occasionally the number of area cladograms is larger under A1 and A2, but in most cases the same area cladograms are derived under each assumption.

Under A0, a widespread taxon is interpreted as a “synapomorphy” of the areas in which it occurs (Zandee and Roos, 1987; Wiley, 1988a). Thus, no character conflict is introduced and therefore dealing with widespread taxa under A0 occurs most parsimoniously (Fig. 3). Under A1 and A2 only the data columns (i.e., the A0 data matrix) are used to establish cladogram length. Since cladograms derived (for widespread taxa) under A0 already represent the most parsimonious solutions, new cladograms derived under A1 or A2 can never be preferred over those derived under A0. It can happen that for taxon-area cladograms with more than one area at a terminal node (widespread taxa), additional cladograms are derived under A1 or A2 that are equally parsimonious to the cladograms derived for widespread taxa under A0. However, in most cases of data sets with widespread taxa in this

FIG. 3. Area cladograms derived under A0 and A1 with CAFCA for a cladogram with a widespread taxon (in areas C and D). (■) Nonhomoplasious; (□) homoplasious.
study, no additional equally parsimonious cladograms are derived under A1 or A2 and the same area cladogram is derived under A0, A1, and A2.

CAFCA makes no special provisions for sympatric taxa, but deals with them “as is” and obtains the same area cladograms under all three assumptions, thus fulfilling requirement I.

Only some data sets containing combinations of a widespread taxon and sympatric taxa in a single monophyletic group generate area cladograms under A1 and A2 that are more parsimonious than those that are found under A0 (Fig. 4). As a result requirement I is broken in these cases (Table 1).

One can use the number of steps for the cladogram derived under A0 as an upper limit for cladogram selection under A1 or A2. By applying this ad hoc procedure, CAFCA not only finds the most parsimonious area cladograms under A1 or A2 but also the less parsimonious area cladograms that already have been derived under A0. As a result, inclusion is obtained (requirement I).

Heterandria/Xiphophorus. Analysis with CAFCA

![Diagram](image)

FIG. 4. Derivation of a more parsimonious area cladogram under A2 with CAFCA for a cladogram with a combination of widespread and sympatric taxa. (m) Multistate character; (n) nonhomoplasious; (□) homoplasious.

<table>
<thead>
<tr>
<th>Cladogram</th>
<th>Solution sets under A0, A1, and A2</th>
</tr>
</thead>
<tbody>
<tr>
<td>rew406, rew509, rew511, rew524</td>
<td>S_0/S_1 S_2</td>
</tr>
<tr>
<td>rew515</td>
<td>S_2 S_1 S_0</td>
</tr>
<tr>
<td>rew516</td>
<td>S_1 S_0 S_2</td>
</tr>
</tbody>
</table>

TABLE 1

Noninclusion of Solution Sets Derived under A0, A1, and A2 with CAFCA for a Single Group with Three to Five Taxa (Cladograms Listed in Appendix ii)

The general area cladograms are obtained from a data matrix consisting of a combination of the data of *Heterandria* and *Xiphophorus*. Since this data matrix is derived per assumption for both genera together, general area cladograms are obtained under a single assumption (requirement II).

Cyttaria/Eriococcus/Madarococcus. Under A0 and A1 the solution sets derived with CAFCA from the Cyttaria and Eriococcus/Madarococcus (Crisci et al., 1991) data matrix are identical and contain one cladogram that needs 16 steps (Fig. 6a). Because a more parsimonious cladogram (15 steps) is found under A2 (Fig. 6b), inclusion of solution sets with general area cladograms derived under A0/A1 and A2 is not obtained.

Under A2, when cladograms that need 16 or fewer steps are selected, i.e., by using the upper limit indicated by the A0 result, in addition to the single most parsimonious cladogram (15 steps) another four cladograms (16 steps) are selected (Fig. 6c). One of these
cladograms is equal to that already found under A0 and A1 and therefore by using the number of steps for the cladogram derived under A0 or A1 as an upper limit, inclusion of solution sets is obtained (requirement I).

The general area cladograms are obtained from a data matrix consisting of a combination of the data of Cyttaria and Eriococcus/Madarococcus. Since this data matrix is derived per assumption for both genera together, general area cladograms are obtained under a single assumption (requirement II).

Brooks Parsimony Analysis

Theoretical data sets for single groups. With BPA all solution sets derived from data sets of a single group of taxa with a widespread taxon show inclusion. In contrast to CAFCA, all columns in the data matrix are used with BPA to count the number of steps under A1 or A2. New columns result in new clades for the areas and frequently result in an increasing number of equally (most) parsimonious cladograms.

As with CAFCA, redundancy for areas (caused by sympatric taxa) is dealt with *a posteriori* in BPA. As a result, the same area cladograms are obtained under all three assumptions and thus requirement I is met.

For the single group data sets with combinations of a widespread taxon and sympatric taxa, noninclusive solution sets are produced when under either A1 or A2 more parsimonious cladograms are obtained than the cladograms derived under A0 or A1 (with the data set optimized on them; Fig. 7). Noninclusive results for the analysis of single group data sets are represented in Table 2.

Inclusive solution sets can be obtained by optimizing the data matrix, derived under A1, on the area cladograms obtained under A0. By using the highest number of steps for this optimization as an upper limit for
cladograms that need 35 steps (Fig. 8a). Under A1 (columns for widespread taxa derived with CAFC) three general area cladograms of 47 steps are derived (Fig. 8b). Two of the general area cladograms derived under A1 are derived under A0 as well. However, because the number of general area cladograms derived under A1 is smaller than the number of general area cladograms derived under A0, inclusion is not obtained. Under A2, 11 general area cladograms of 157 steps are derived, of which 2 are already derived under A0 (i.e., partly overlap; Fig. 8c).

The way to obtain inclusion with this data set is by optimizing the A1 data matrix on the set of general area cladograms derived under A0 and using the maximum number of steps as an upper limit for cladogram selection under A1. When this is done, optimization of the A1 matrix on one of the general area cladograms derived under A0 results in a maximum number of 49 steps. Using that as an upper limit results in 222 cladograms under A1 with the 4 derived under A0 included.

When the data matrix for A2 is optimized on the 222 general area cladograms derived under A1, it appears that the maximum number of steps is 167. Using this as an upper limit results in an explosion of the number of cladogram selection from the data matrix derived under A1, area cladograms obtained under A0 are also found in the set of area cladograms derived under A1. By repeating this procedure with the data matrix derived under A2, area cladograms already obtained under A0 and A1 are obtained under A2 as well and thus inclusion is not broken (requirement I).

Heterandria/Xiphophorus. Parsimony analysis of the data matrix derived for *Heterandria/Xiphophorus* results under A0 in a solution set of four general area cladograms under A0 [Fig. 7].

![Fig. 7. Noninclusion with BPA. Derivation of other area cladograms, under A1, that are more parsimonious than the area cladograms derived under A0.](image)

TABLE 2

<table>
<thead>
<tr>
<th>Cladogram</th>
<th>Solution sets under A0, A1, and A2</th>
</tr>
</thead>
<tbody>
<tr>
<td>rew514</td>
<td>S_0 S_0/S_2</td>
</tr>
<tr>
<td>rew515</td>
<td>S_0 S_1 S_2</td>
</tr>
</tbody>
</table>

FIG. 8. General area cladograms derived with BPA under A0, A1, and A2 for *Heterandria/Xiphophorus* [(a) general area cladograms under A0; (b) general area cladograms under A1; (c) general area cladograms under A2)].
of general area cladograms (11,698) under A2. Analysis of this data set shows that, depending on the number of extra steps necessary to include all area cladograms derived under a stricter assumption, solution sets can explode in the number of possible area cladograms they encompass.

Just as with CAFCA, the general area cladograms are obtained in BPA from a data matrix consisting of a combination of the data of Heterandria and Xiphophorus. The data matrices are derived per assumption for both genera together and therefore general area cladograms are obtained under a single assumption (requirement II).

Cyttaria/Eriococcus/Madarococcus. With the data matrix derived for Cyttaria and Eriococcus/Madarococcus (Crisci et al., 1991), the same general area cladogram was derived under A0, A1, and A2 with BPA (Fig. 9).

The solution sets derived under the three assumptions are equal and so inclusion is obtained (requirement I).

The general area cladogram for Cyttaria and Eriococcus/Madarococcus is obtained under a single assumption (requirement II) because the data matrices for BPA are derived per assumption for both genera together.

Component 1.5 (Component Analysis)

Theoretical data sets for single groups. With respect to widespread taxa, CA (as implemented in Component 1.5) results in inclusive solution sets for the single group data sets under A0, A1, and A2. Because the number of components recognized increases from A0 to A1 to A2, the number of area cladograms derived under these assumptions increases as well.

Solutions derived under A0, A1, or A2 with Component 1.5 can differ because, as we showed before, sympatric taxa are dealt with in different ways under these assumptions. When sympatric taxa are dealt with by Component 1.5, often more or other area cladograms are obtained under A1 than the area cladograms that are obtained by *a priori* removal of areas under A2. As a result, solution sets obtained under A2 do not include all (or none) of the area cladograms already obtained under A1 and therefore inclusion of solution sets is then broken.

Inclusion of solution sets is most frequently broken when combinations of a widespread taxon and sympatric taxon are dealt with *a priori*. This is caused by the specific solution (suggested by Nelson and Platnick, 1981, and Page, 1988) of combinations of a widespread taxon and sympatric taxon under A2. *A priori* removal of one of the redundant areas (i.e., pruning of the widespread taxon in the redundant area) often results in a limitation of the number of solutions derived under A2. As a result, solution sets obtained under A2 are smaller than solution sets obtained under A1 and inclusion is broken. Noninclusive results for the analysis of single group data sets are represented in Table 3.
TABLE 3
Noninclusion of Solution Sets Derived under A0, A1, and A2 with Component 1.5 for a Single Group with Three to Five Taxa (Cladograms Listed in Appendix ii)

<table>
<thead>
<tr>
<th>Cladogram</th>
<th>Solution sets under A0, A1, and A2</th>
</tr>
</thead>
<tbody>
<tr>
<td>red406, red510, red515, rew406, rew509, rew524, rew525</td>
<td></td>
</tr>
<tr>
<td>red 512</td>
<td></td>
</tr>
<tr>
<td>rew301, rew402, rew502, rew503, rew505, rew511, rew512, rew520</td>
<td></td>
</tr>
<tr>
<td>rew302, rew401, rew403, rew409, rew501, rew504, rew506, rew516, rew517, rew519, rew523</td>
<td></td>
</tr>
<tr>
<td>rew407, rew508, rew510, rew513, rew522</td>
<td></td>
</tr>
<tr>
<td>rew515</td>
<td></td>
</tr>
</tbody>
</table>

FIG. 10. Area cladograms derived with Component 1.5 under A0, A1, and A2 for *Heterandria* and *Xiphophorus* [(a) area cladogram for *Heterandria* under A0, A1, and A2; (b) area cladogram for *Xiphophorus* under A0; (c) strict consensus of the nine area cladograms for *Xiphophorus* under A1; (d) strict consensus of the three general area cladograms for *Heterandria/Xiphophorus* in the intersection of solution sets under A2)].

Heterandria/Xiphophorus. For *Heterandria*, the same area cladogram is derived under A0, A1, and A2 (Fig. 10a) with Component 1.5 because no widespread or sympatric taxa are present in the *Heterandria* data set. Inclusion is thus not broken with this data set. None of the taxa of this group inhabit Area C and therefore is not present in the area cladogram.

For *Xiphophorus*, a single area cladogram is obtained under A0 (Fig. 10b) with Component 1.5. Under A1, the widespread taxa T5 and T6 are split in different occurrences with a trichotomy at the basis. Resolving these trichotomies results in nine area cladograms under A1 with Component 1.5 (the strict consensus of these cladograms is represented in Fig. 10c). Under A2 each occurrence of a widespread taxon is removed from the cladogram and reconnected in such a way that it floats over the whole cladogram. In this way, for *Xiphophorus* 1165 area cladograms are obtained with Component 1.5. Comparison of the solution sets derived under A0, A1, and A2 shows that inclusion is obtained (requirement I). The area cladograms obtained are without area G since no taxa of *Xiphophorus* are found within this area.

Comparing the sets of area cladograms derived for both genera under A0 or A1 reveals no general area cladograms since the intersections are empty. Only under A2, three general area cladograms are found in the intersection (the strict consensus of these cladograms is represented in Fig. 10d). These three general area cladograms agree on the position of the areas present in the *Heterandria* data set. Only area C (no *Heterandria* taxa present) is found at three different positions based on the *Xiphophorus* data. The position of area G in the general area cladograms is derived from its position in the area cladogram derived for *Heterandria.* Since
this is only a single area cladogram, the position of area G is stable in the three general area cladograms obtained under A2.

Because with Component 1.5 general area cladograms are found only by comparison of sets of area cladograms obtained for Heterandria under A2 and obtained for Xiphophorus under A2, general area cladograms are obtained under a single assumption (requirement II).

Cyttaria/Eriococcus/Madarococcus. For Cyttaria (Crisci et al., 1991), a single area cladogram is derived (Fig. 11a) with Component 1.5 under A0. This area cladogram is the same as already derived with CAFCA and BPA under A0. Under A1 three area cladograms are obtained (Fig. 11b) and under A2 only two of these area cladograms are derived (Fig. 11c). As a consequence, requirement I is broken for the data on Cyttaria.

The data on Eriococcus/Madarococcus (Crisci et al., 1991) do not cause any problems with respect to inclusion of solution sets. Under A0, a single area cladogram is derived (Fig. 12a). In addition to this area cladogram, under A1 two additional area cladograms are derived.
(Fig. 12b). Under A2, 11 area cladograms are derived (Fig. 12c), including those derived under A0 and A1.

With Component 1.5, no general area cladograms are found in the intersection of the sets of area cladograms derived under A0 for both data sets. Under A1 in the intersection of the sets of area cladograms, three general area cladograms are found. Comparison of the sets of area cladograms derived under A2 results in two general area cladograms (also derived under A1) in common. Since the number of general area cladograms derived under A2 is smaller than the number of general area cladograms derived under A1, inclusion of sets of general area cladograms under A0, A1, and A2 is broken (requirement I).

For Cyttaria and Eriococcus/Madarococcus general area cladograms are obtained by comparison of sets of area cladograms obtained for each group under A1 or A2. By only comparing the sets of area cladograms derived for each group under the same assumption, requirement II is met.

Component 2.0 (Reconciled Tree Analysis)

Theoretical data sets for single groups. RTA with Component 2.0 results in inclusive solution sets derived for single group data sets under A0, A1, and A2 when dealing with widespread taxa. Sympatric taxa can be dealt with only by the derivation of reconciled trees. Area cladograms that need the least independent losses and duplications for reconciliation with the taxon-area cladograms are selected. Sympatric taxa cannot be dealt with under A0 (i.e., *a posteriori*) with this computer program and under A2 sympatric taxa are dealt with in the same way as under A1 (i.e., via tree reconciliation). As a result the same area cladograms are obtained with Component 2.0 when sympatric taxa are dealt with under A0, A1, or A2 and inclusion is not broken.

With Component 2.0, inclusion is broken when combinations of a widespread taxon and sympatric taxa are dealt with under A2 by *a priori* removal of areas in favor of endemics. As a result of this operation, often, smaller solution sets are obtained under A2 than under A0 or A1 and consequently inclusion is broken. We show noninclusive results for the analysis of single group data sets in Table 4.

Heterandria/Xiphophorus. With Component 2.0, the data sets from *Heterandria* and *Xiphophorus* are used together for the selection of general area cladograms. Under A0 one general area cladogram (via a reconciliation that need 12 losses and 3 duplications) is obtained for *Heterandria* and *Xiphophorus* (Fig. 13a). Under A1 also a single general area cladogram (via a reconciliation that needs 9 losses and 2 duplications) is obtained that is different from the one derived under A0 (Fig. 13b). Analysis of the data under A2 obtains three general area cladograms (Fig. 13c) (via reconciliations that need 7 losses and 2 duplications). These three general area cladograms are similar to the three general area cladograms that are found in the intersection of solution sets derived for *Heterandria* and *Xiphophorus* with Component 1.5 under A2. The general area cladograms derived with Component 2.0 under A0, A1, and A2 are all different and therefore inclusion is broken (requirement I).

With Component 2.0, general area cladograms are obtained via reconciliation of area cladograms with the taxon–area cladograms of both *Heterandria* and *Xiphophorus*. The area cladograms that need (in total) a minimum amount of independent losses and duplications for reconciliation are selected as general area cladograms. Because widespread or sympatric taxa in the data of both poeciliid fish genera are dealt with in the same way per analysis, general area cladograms are derived under the same assumption (requirement II).
Assessing Methods in Vicariance Biogeography

FIG. 13. General area cladograms derived with Component 2.0 under A0, A1, and A2 for *Heterandria/Xiphophorus* [(a) general area cladogram under A0; (b) general area cladogram under A1; (c) general area cladograms under A2].

FIG. 14. General area cladograms derived with Component 2.0 under A0, A1, and A2 for *Cyttaria and Eriococcus/Madarococcus* [(a) general area cladogram under A0 and A1; (b) general area cladograms under A2)].

Madarococcus are dealt with in the same way per analysis (i.e., under a particular assumption) and therefore requirement II is met.

Three Area Statement Analysis

Cyttaria/Eriococcus/Madarococcus. The data sets of *Cyttaria* and *Eriococcus/Madarococcus* (Crisci et al., 1991) are used together for the selection of general area cladograms under A0, A1, and A2. Under A0 and A1 the same general area cladogram is derived (Fig. 14a) (via a reconciliation that needs six losses and five duplications). Under A2, the data sets are manually edited by removing areas in the distribution of *Cyttaria* and *Eriococcus/Madarococcus* in favor of endemics. Analysis of the data sets for both groups under A2 reveals three general area cladograms (Fig. 14b) (via reconciliations that need six losses and four duplications). The area cladogram derived under A0 and A1 is also found in the solution set derived under A2 and therefore inclusion is not broken.

Just like with the data from *Heterandria/Xiphophorus*, general area cladograms for *Cyttaria* and *Eriococcus/Madarococcus* are obtained via reconciliations between area cladograms and taxon–area cladograms from both groups. Widespread taxa in *Cyttaria* and *Eriococcus/
TABLE 5
Noninclusion of Solution Sets Derived under A0, A1, and A2 with TAS for a Single Group with Three to Five Taxa (Cladograms Listed in Appendix ii)

<table>
<thead>
<tr>
<th>Cladogram</th>
<th>Solution sets under A0, A1, and A2</th>
</tr>
</thead>
<tbody>
<tr>
<td>wid401, wid402, wid403, wid404, wid501, wid502, wid503, wid504, wid505, wid506, wid507, wid508, wid509</td>
<td>$S1/S2$</td>
</tr>
<tr>
<td>rew406, rew509, rew511, rew512, rew515, rew524</td>
<td>$S1/S2$</td>
</tr>
</tbody>
</table>

Just like with CAFCA and BPA, with TAS the general area cladograms for Heterandria and Xiphophorus are obtained by combining the data of both genera in one single matrix (but now consisting of three area statements). This is done under each assumption and therefore requirement II is met.

Cyttaria/Eriococcus/Madarococcus. For the data matrix derived for Cyttaria and Eriococcus/Madarococcus, 73 three area statements are derived with TASA2. Nelson and Ladiges (1991 a,c) recommend removing redundant areas a priori in favor of endemics. These areas are unable to float over the area cladogram and often fewer area cladograms are derived under A2 than under A0. As a result, requirement I is violated (Table 5).

Heterandria/Xiphophorus. Under both A0 and A1/A2 the same general area cladogram is derived for the data sets derived for the poeciliid fishes (Fig. 16). No a priori removal of areas from one of the taxon–area cladograms is necessary because no combinations of widespread taxa with sympatric taxa are present in the data sets. Therefore, both A1 and A2 use the same nodes for derivation of the same matrices with three area statements from which the same solution sets are derived. For these data sets, inclusion of solution sets is not broken with TAS.
of three area statements under A0, A1, and A2 for this data set results in violation of requirement I.

General area cladograms for *Cyttaria* and *Eriococcus/Madarococcus* are obtained from a single data matrix. This matrix is derived under A0, A1, or A2. Because the same assumption is applied in the derivation of this data matrix (with three area statements) for both genera, general area cladograms are obtained under a single assumption (requirement II).

CONCLUSIONS

In this study we assessed the precise implementation of A0, A1, and A2 in the computer programs of five different methods that are used in vicariance biogeography for inference of area cladograms. By construction of area cladograms for theoretical data sets of single groups of taxa and empirical data sets of *Heterandria/Xiphophorus* (Rosen, 1978) and *Cyttaria/Eriococcus/Madarococcus* (Crisci et al., 1991), we assessed the performance of the methods for two requirements:

I. Solution sets derived under A0, A1, and A2 should be inclusive.

II. Solution sets for two or more groups of taxa should be compared under the same assumption.

From our assessment we conclude that requirement II is never violated since the computer programs of all methods appear to obtain general area cladograms under a single assumption.

The programs Component 1.5, Component 2.0, and TAS of the *a priori* methods Component Analysis, Reconciled Tree Analysis, and Three Area Statement Analysis, respectively, implement A0, A1, and A2 in such way that requirement I is bound to be violated. Each of these *a priori* methods adds or prunes taxa and taxon relationships to the original taxon cladogram from which the initial hypothesis of area relationships is obtained. Each of these *a priori* methods prunes under A2 taxa and taxon relationships from the taxon cladogram in such way that the initial historical relationships of taxa under A0 may become excluded, unavoidably resulting in noninclusion.

In this study we show that violation of requirement I arises when implementations of CA, RTA, or TAS deal with sympatric taxa or combinations of widespread and sympatic taxa *a priori*. In Van Veller et al. (1999) we recommend that in order to explain all data, one should deal with sympatric taxa only "as is." By this we mean that no *a priori* steps should be taken to deal with sympatric taxa and that the absence of taxa or the presence of multiple taxa in the area cladogram, caused by extinction or dispersal, should be accounted for only *a posteriori*. For Component 1.5 this can be achieved by dealing with sympatric taxa under A0. For TAS, we showed in this paper that sympatric taxa are dealt with "as is" under A0 and A1. By not *a priori* removing sympatric occurrences of widespread taxa (contrary to the recommendation by Nelson and Ladiges, 1991a,c), sympatic taxa can be dealt with "as is" with TAS as well. For Component 2.0 we also recommend not dealing with sympatric taxa *a priori* by reducing widespread taxa in favor of endemics. However, for an implementation of RTA it is not possible to deal with sympatric taxa "as is" since no data matrices are constructed, but trees are compared, reconciled, and used to deal with sympatric taxa *a priori*. In a future paper we will suggest additional procedures for dealing with widespread and sympatic taxa with Component 1.5, TAS, and Component 2.0 in such way that violation of requirement I is remedied.

In this paper we also show that implementations of *a posteriori* methods are not free from violation of requirement I. Noninclusion of solution sets may emerge when the data contain incongruencies. We found that this can be remedied by applying an upper limit for the number of steps (for selection of area cladograms) under a less strict assumption (e.g., A1). This upper limit is equal to the number of steps of the
most parsimonious area cladogram(s) found under a stricter assumption (e.g., A0). Application of these ad hoc procedures results in inclusive solution sets obtained with CAFCA or via BPA. For BPA, however, we showed that application of an upper limit for selection of area cladograms under a less strict assumption can result in an explosion of solution sets. A more fundamental solution to the violation of requirement I with the implementations of \textit{a posteriori} methods might be sought in a quality assessment of the nodes of the area cladograms ahead of the derivation of solution sets. However, this remains to be examined in a future study.

APPENDIX i

Steps when Applying Implementations of CCA, BPA, CA, RTA, and TAS to Obtain Area Cladograms from Cladogenetic and Distribution Data under Different Assumptions

CCA

\[
\begin{align*}
\text{taxon-area cladogram} & \\
\text{T1} & \rightarrow \text{A} \\
\text{T2} & \rightarrow \text{B} \\
\text{T3} & \rightarrow \text{A+C} \\
\end{align*}
\]

BPA

\[
\begin{align*}
\text{taxon-area cladogram} & \\
\text{T5} & \\
\text{T4} & \\
\text{T3} & \rightarrow \text{A+C} \\
\end{align*}
\]
APPENDIX i—Continued

CA

\[
\begin{array}{c}
\text{taxon-area cladogram} \\
A \downarrow T1 \quad B \downarrow T2 \quad A+C \downarrow T3 \\
T4 \downarrow T5 \\
taxa \\
\end{array}
\]

\[S0 \leftarrow \text{parsimony analysis} \]

\[
\begin{array}{c}
\text{outgroup} \\
\text{areas} \\
\end{array}
\]

\[\text{adjustments} \rightarrow \text{taxa} \]

\[S1 \leftarrow \text{parsimony analysis} \]

\[
\begin{array}{c}
\text{outgroup} \\
\text{areas} \\
\end{array}
\]

RTA

\[
\begin{array}{c}
\text{taxon-area cladogram} \\
A \downarrow T1 \quad B \downarrow T2 \quad A+C \downarrow T3 \\
\text{estimated area cladogram} \\
A \quad B \quad C \\
\end{array}
\]

\[\text{branch-swapping} \]

Tree Reconciliation

\[
\begin{array}{c}
\text{area cladograms with minimal losses/duplications} \\
A0 \quad A1 \quad A2 \\
\end{array}
\]

map widespread taxa under A0 A1 A2
\[\text{each terminal node one area} \]

\[\text{taxon-area cladogram, e.g.} \]

Copyright © 2000 by The Willi Hennig Society
All rights of reproduction in any form reserved
APPENDIX i—Continued
APPENDIX ii

Taxon Cladograms for up to Five Taxa in a Single Group with One Widespread Taxon (wid), Two Sympatric Taxa (red), and a Combination of One Widespread Taxon and Two Sympatric Taxa (rew)

WIDESPREAD TAXA
(a+b = widespread taxon present in both area a and area b)

3 taxa

4 taxa

5 taxa

Copyright © 2000 by The Willi Hennig Society
All rights of reproduction in any form reserved
APPENDIX ii—Continued

SYMPATRIC TAXA
(r = sympatric taxa present in redundant area r)

4 taxa

red401
red402
red403
red404

5 taxa

red501
red502
red503
red504

red505
red506
red507
red508

red509
red510
red511
red512

red513
red514
red515
APPENDIX ii—Continued

SYMPATRIC & WIDESPREAD TAXA

(r = sympatric taxa present in redundant area r;
 r+a = widespread taxon present in both redundant area r and another
 non-redundant area a)

3 taxa

4 taxa

5 taxa
APPENDIX ii—Continued

SYMPATRIC & WIDESPREAD TAXA (CONTINUATION)

5 taxa

rew513 rew514 rew515 rew516

rew517 rew518 rew519 rew520

rew521 rew522 rew523 rew524

rew525
APPENDIX iii

APPENDIX iv

Taxon Cladograms for Cyttaria (Crisci et al., 1988) and Eriococcus/Madarococcus (Humphries et al., 1986) with Areas of Distribution Superimposed; Both Cladograms Are Also Represented in Crisci et al. (1991)

ACKNOWLEDGMENTS

We thank D. R. Brooks for his comments on a previous version of the manuscript. This work was supported by the Life Sciences Foundation (SLW), which is subsidized by The Netherlands Organization for Scientific Research (NWO), and by Grant 805-33.193 to MVV.

REFERENCES

Assessing Methods in Vicariance Biogeography

